


GUANTE GUANTES DE NEOPRENO/LÁTEX JUBA - 321CB GRANDEUR 70

0,70 mm thickness heavy latex and neoprene unsupported gloves

NORMATIVE

Distributed by:

CHARACTERISTICS

- Blend of neoprene and natural rubber for a trustful permeation resistance to chemicals.
- Anatomical shape and flocked for extra comfort.
- Chlorinated to improve protection.
- · Low in soluble proteins.
- Bactericide treatment.
- Additional coating to enhance resistance.

WORKING GLOVES SUITABLE FOR:

- Chemical industry.
- Industrial maintenance and cleaning.
- Agricultural treatments.
- · Construction, masonry and plumbing.
- · Industrial laundry.
- Fishing industry.

MORE INFO					
Materials	Colour	Thickness	Length	Sizes	Packaging
Latex / Neoprene	Black	0.70 mm	XS - 30 cm S - 30 cm M - 30 cm L - 30 cm XL - 30 cm	6/XS 7/S 8/M 9/L 10/XL	12 pairs/package 144 pairs/box

NORMATIVAS

EN388:2016 Protective gloves against mechanical risks.

The EN388: 2003 standard is renamed EN388: 2016, the year of its revision. The reason for the modification is given by the discrepancies in the results between laboratories in the knife cut test, COUP TEST. Materials with high levels of cut produce a dulling effect on the circular blades, which undermines the result.

The new regulation was published in November 2016 and the previous one is from the year 2003. During these 13 years, there has been a great innovation in the materials for the manufacture of cutting gloves, they have forced to introduce changes in the tests to be able to measure with more rigorous levels of protection. If you want to know more about the main changes in these regulations, you can consult it through our website www.jubappe.es

EN 388:2016

EN 388:2016

ABCDEF

- A Abrasion resistance (X, 0, 1, 2, 3, 4)
 B Blade Cut Resistance (X, 0, 1, 2, 3, 4, 5)
 C Tear resistance (X, 0, 1, 2, 3, 4)
 D Puncture resistance (X, 0, 1, 2, 3, 4)
 E Cutting by sharp objects ISO 13997 (A, B, C, D, E, F)
- F Impact test complies / does not comply (It is optional. If it complies, put

1	2	3	4	5
00	500	2000	8000	-
,2	2,5	5	10	20
0 :	25	50	75	-
0	60	100	150	-
C ,;	00 2	00 500 2 2,5 0 25	00 500 2000 2 2,5 5 0 25 50	00 500 2000 8000 2 2,5 5 10 0 25 50 75

Eniso13997:1999 performance levels	Α	В	С	D	Е	F
6.3 tdm: cut resistance (newtons)	2	5	10	15	22	30

Distributed by:

ENISO374-1:2016

EN ISO 374-5:2016

The EN374: 2003 standard is renamed ENISO374: 2016. The purpose of this standard is to classify gloves according to their behavior when exposed to chemical substances.

Letter	Chemical substance	Cas number	Class
Α	Methanol	67-56-1	Primary alcohol
В	Acetone	67-64-1	Cetone
С	Acetonitrile	75-05-8	Nitrile compound
D	Dichloromethane	75-09-2	Chlorine hydrocarbon
E	Carbon disulfide	75-15-0	Sulphate organic compound

They are divided into the following parts:

EN ISO 374-1:2016 - Terminology and performance requirements for chemical risks.

EN 374-2:2014 - Determination of resistance to penetration.

EN 16523-1:2015 + A1:2018 - Permeation by liquid chemicals under continuous contact conditions.

EN ISO 374-4:2019 - Determination of resistance to chemical degradation.

EN ISO 374-5:2016 - Terminology and requirements demanded for risks

Gloves classification according to ENISO374-1: 2016

Gloves are divided into three types:

TYPE A

Step time \geq 30 min for at least 6 products

TYPE B

Step time ≥ 30 min for at least 3 products

TYPE C

Step time ≥ 10 min for at least 1 products

G D	oluene iethylamine etrahydrofuran	108-88-3 109-89-7	Aromatic hydrocarbon
_	•	109-89-7	
н т	etrahydrofuran		Amine
	cu any aronaran	109-99-9	Heterocyclic ether
I Et	thyl acetate	141-78-6	Ester
J N	-heptane	142-85-5	Saturated hydrocarbon
l K	odium hydroxide 0%	1310-73-2	Inorganic alkaline
L S	ulphuric acid 96%	7664-93-9	Inorganic, oxidising mineral acid
M N	itric acid 65%	7697-37-2	Inorganic, oxidising mineral acid
N A	cetic acid 99%	64-19-7	Organic acid
()	mmonia hydroxide 5%	1332-21-6	Organic alkaline
	ydrogen peroxide 0%	7722-84-1	Peroxide
	ydrofluoric acid 0%	7664-39-3	Mineral organic acid
T F	ormaldehyde 37%	50-00-0	Aldehyde

Levels of resistance to permeability

Taverage penetration time	Performance levels	Average penetration time	Performance levels
> 10	Class 1	> 120	Class 4
> 30	Class 2	> 240	Class 5
> 60	Class 3	> 480	Class 6

Gloves classification according to EN374-2:2014

It is the advance of chemical products through the material, seams of the glove at a non-molecular level. Air leak test: the glove is inflated with air and immersed in water. The appearance of air bubbles is controlled within 30 '. Water leak test: the glove is filled with water and the appearance of water droplets is controlled. If these tests are positive, the pictogram will be put on.

Gloves classification according to EN374-4: 2013
Detriment to some of the glove's properties due to contact with a chemical. Eg: discoloration, hardening, softening, etc.Permeation test EN 16523-1. It is the advancement of chemicals at the molecular level. The resistance of the

glove material to permeation by a chemical is determined by measuring the time it passes through the material.

Modification of the ENISO374-5: 2016 standard

When the glove passes the test described for virus protection, the word "virus" will appear under the pictogram. If nothing appeared, protection would only be assured against bacteria.

Distributed by:

